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We define the complexity of Nash functions and give a Bezout theorem which uses this com-
plexity. Then we obtain an upper bound for the sum of the Betti numbers of a Nash set.

1. Introduction

Let fbe a polynomial map f: R"— RX, f=(f,, ..., f¢) such that foreach i=1,..., k,
deg f;=d and Zf=f’l(0). Milnor [7] and Thom [12] give an upper bound for the
sum of the Betti numbers of Z:

io bi(Z)=d@d-1""L. 6))

In particular, this gives an upper bound for the number of connected components
of Z;. This result is used by Ben-Or [1] to produce lower bounds in algorithm com-
plexity. Another application can also be found in [5] for the number of configura-
tions and polytopes in R?.

Several works have been carried out to improve the bounds in (1). These are main-
ly centered on 3 ways:

(1) Smith’s theory and topology of complex projective complete intersection are
used to obtain a better bound in equation (1) [3]. More precisely, note that the
bound in (1) does not depend on k. The importance of the parts played by k& and
n is distinguished. Then, in some cases, a better bound than the previous one is ob-
tained.

(2) The bound in (1) is expressed according to other invariants of f like number
of monomials, additive complexity [6, 10, 11].

(3) To obtain a similar relation to (1) in a ‘larger class of functions’ than the
polynomials: Nash functions, Liouville functions, Pfaff functions, .... Already, we
note that one of the main difficulties in this case is the definition of a notion, named
complexity, which will replace the degree of a polynomial. The minimal properties
that this complexity should satisfy are mentioned in [2].

Our aim is located in this third way, using as a frame the Nash functions: C*®
semi-algebraic functions, defined in an open semi-algebraic U of R”, where R
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denotes a real closed field. In the case of R=R, Nash functions are equivalent to
analytic functions which satisfy a polynomial equation P(x, f(x)) =0, where P is a
polynomial in R[X, Y] which does not vanish identically [4]. Then we introduce the
notion of complexity of Nash function as being the total degree of its minimal
polynomial. It is the obvious generalization of the degree of a polynomial.

In [9], we show that there exists a semi-algebraic set which parametrizes the set
of Nash functions having complexity smaller or equal to an integer d. This leads to
the existence of uniform bounds for quite a lot of problems: Y.ojasiewicz’s inequai-
ity, Positivstellensatz, approximation theorem etc. In particular, we prove the
finiteness of topological types of Nash sets for a given complexity.

In this paper, we prove a Bezout theorem for Nash function (Section 3). Then,
following Milnor’s ideas, we obtain an upper bound for the sum of the Betti
numbers of a Nash set V, depending on the complexity of the different functions
which define V.

2. Nash functions. Complexity

Let U an open semi-algebraic of R”, where R denotes a real closed field.

A function f: U— R is called semi-algebraic if its graph is a semi-algebraic set of
Rn +1 .

A function f:U— R is a Nash function if it is semi-algebraic and C*. The
following lemma is a well-known result about Nash functions [4]:

2.1. Lemma. There exists a polynomial Pe R[X, Y], which does not vanish iden-
tically, such that for all xe U: P(x, f(x))=0. [

2.2. Definition. Let f: U— R be a Nash function.

The complexity of f, noted c(f), is the minimum of the total degree of
polynomials Pe R[X, Y], which do not vanish identically and satisfy for all xe U:
P(x, f(x))=0, i.e.

c(f) =Min{degP]PeR[X, Y], P(x, f(x))=0 for all xe U}.

This definition is then an obvious generalization of a polynomial degree.
Let us recall some results about complexity of a sum, a product, and a derivative.

2.3. Proposition. Let f and g be Nash functions. Then we have:
M c(f+g=c(f):c(®.
@ c(f-8)=2c(f)-c(2).
3) c(fH=2¢(f).
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Proof. (1, 2, 5) See [9].
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(3) Let P(x,y)=a,(x)y"+ -+ ay(x) be the minimal polynomial of f. We split

P(x, f(x)) into 2 parts:
P, f(x)= L

ieven

Then, we obtain

< ) a,-(x)f")

a@f'+ % e’

_f<

) ai(x)fi_l>

ieven fodd
and
\2 AV
(T acor) =f2<2;,dai(x)f'—‘>.
So

)

ieven

oW, y) = <

\2
ai(X)y’> —y2<A .
1O

» a,-(x)y"*)z

is a polynomial of degree less than or equal to 2¢(f) and Q(x,fz(x))=0.

(4) Easy consequence of (1) and (3).

3. Bezout theorem

3.1. Theorem. Let U be a connected open semi-algebraic of R" and f,,
., defined in U.

Sfunctions of complexity cy, ..

g

ooy fn Nash

Then the number of non-degenerated solutions of the system

fl (x) = O,
S :
) =0

is finite and less than or equal to I];_, ¢;.

Proof. A point x,= (2 ...,x% e R" is a non-degenerated solution of (S) if and only
if the jacobian J(x) of f,(x),...,f,(x) is not zero at x;.

af, afi

a—xz (xp) - ax, (x0)
J(xo) = N

a1y 0/,

%, (%) - ox, (6]
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Let F(x,»),...,F,(x,y) be polynomials of minimal total degree such that
Fi(x, f;(x))=0.
Consider the system

F,(x,0) =0,
(x) :
F,(x,0)=0.

Any non-degenerated solution x;, of (S) is a solution of (£). Then we can bound,
by using the Bezout theorem for polynomials, the number of non-degenerated solu-
tions of (S) by those of (X).

However, x; may be a degenerated solution of (£) and is not taken into account
when we apply the Bezout Theorem to this system. Therefore we must proceed dif-
ferently.

Let e=(gy,...,€,) € R". Consider the system (S,) obtained by making a ‘small
perturbation to §’.

fl (X) = 81’
Jn(x) ;8,,.

Let x, be a non-degenerated solution of (S). By the local inverse theorem, there
exists a non-degenerated solution x =¢(¢), near x; for ¢ close to 0.

We claim that we can choose &£=(g;,...,&,) such that ¢(¢) is also a non-
degenerated solution of the system (X,):

Fi(p(e), &) =0,

Fy(0(e),&,) = 0.

Indeed, we have

dF; oF,; af
“(p(e), &) = — ((p(e),e,-)—f (p(€)).
dx; dy dx;
So,
aF oF
(@), &) ... — (p(e). &)
d9x; dx,,
J(F(pe) = )
F aF,
oFy (@(€),€,) .. — (9(£), €p)
ax, ax,

" 3F,
=(=D"J(pEn 11 5 “(9(8), &)
i=1 y

Since ¢(¢) is a non-degenerated solution of (S,), also J(@(e))#0. Then it is
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enough to prove that the set of germs at 0 of ¢ such that
" 9F;
—(p(€),€)=0
LI] 3y (9(e), &)

is of dimension less than or equal to n.
If not, we may assume that dF;/9y(¢(€),€;) =0 in a neighbourhood W of 0.

oF aF
—L 0 1) = = (0(e), &)
dy ay

will vanish identically in the neighbourhood U N f~ (W) of x,. Since F; is the
minimal polynomial of fj, this gives a contradiction.

Then the number of non-degenerated solutions of (S) is bounded by the number
of non-degenerated solutions of (X,) which is less than or equal to [1;_; ¢; by the
Bezout theorem for polynomials. O

4. Bounds for the sum of the Betti numbers of a Nash set

4.1. Definition. A Nash set V in R” is a semi-algebraic set which can be
represented as

V={xeR"| fi() = =f,(x) =0}

where f; denotes a Nash function.

Let V be a Nash set. We denote by H;(J) the ith homology group of V with
coefficients in Z/2Z. H, (V) is a Z/2Z-vector space; its dimension, denoted by
b;(V), is called the ith Betti number of V. In particular, by(V) is the number of
connected components of V. Every b;(V) is finite and is null if i=dim(}). Then,
the sum of the Betti numbers of V is always finite.

Let us recall that a function g: ¥V — R is a Morse function if g has only non-
degenerate critical points.

On the other hand, according to Morse theory [8], if g: V' — R is a Morse function
with ¥ compact and non-singular, then the sum of the Betti numbers of V is less
than or equal to the number of critical points of g.

4.2. Theorem. Let V be a Nash set, compact and non-singular, defined by f=0,
where f denotes a Nash function of complexity <d. Then

Y G:i(V)s=d>l,

Proof. We follow Milnor’s proof [7] step by step for introducing some control and
explicit bounds. Let #7: ¥ — S” ! be the function which assigns to each point xe V
the unit normal vector. The set of critical values of # has dimension less than (n# — 1).
Then, there exist 2 points of S$”~! which are not critical values of n. Up to a rota-
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tion, we may assume that these points are (0, ..., 1) and (0, ..., —1). Remark that a
rotation affects only the x; and does not change the complexity. Let #:V — R be
the ‘height function’: hA(x;, ..., Xx,) =X,. Let us show that 4 is a Morse function. Let
y be a critical point of A. We can take near y local coordinates: x; =4, ...,X,_; =
U, _ 1, X,=h(u,,...,u,_). We can compute that

2

_ 4 = +
aui (y) auiauj'

).

The matrix (azh/au,-auj(y)) is non-singular; this means that A is a Morse function.
It follows, by Morse theory, that the sum of the Betti numbers of V is less than
or equal to the number of critical points of 4. They are the solutions of the system

3x1 o
) 4
a
f o
axn—l
S =0

Since A is a Morse function, y is a non-degenerated solution of (S). Hence, we can
apply Bezout theorem to the system (S). Since each df/dx; is a Nash function of
complexity less than or equal to c¢(f)*>=d?, the theorem follows immediately. O

Now we want to remove the hypothesis that ¥ is compact and non-singular.

4.3. Theorem. Let V be a Nash set defined by fi(x)= - =f,()=0 where f;
denotes a Nash function of complexity less than or equal to d.
Then the sum of the Betti numbers of V is less than or equal to £ (2°*'d?)* !,

Proof. For R =0 sufficiently large, the inclusion B(0,R) N V - V is a deformation
retract. So, it is enough to bound ¥, b;(B(0,R) N V). For a given ¢=0, let F, be the
Nash function defined by

Fo(x) = f200) + -+ + f2(0) + &2 x)* — R

F,(x) has a complexity less than or equal to 27" !d? (|x|? is of complexity 2).
Let K, = {xeR"|F,(x)<0}. K, is a compact set since it is contained in the disk
B(0,R/¢).
On the other hand, Sard’s theorem gives us a real =0 such that for £ €]0, 4[, the
boundary 9K, ={xeR" | F,(x)=0} of K, is non-singular. Then we can apply the
above theorem to 0K,:

T 5i(0K)<(@7"'dP)>
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Now applying Alexander duality, it follows that

1 1
Z bl(Ke)S ? Z b,(aKe)S ?(21”'1611’)2"—1.
Since
m ny= ﬂ KE

€€]0,qa[

and the fact that these sets can be triangulated, we have

H(B(O,R) N V) = lim H;(K,).
So, 1
E b:(V) = E b,(B(O,R) ny)= E bi(Ke)S _2_(2p+1dp)2n—1' 0
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