BEZOUT THEOREM FOR NASH FUNCTIONS

R. RAMANAKORAISINA
UER de Mathématiques, Faculté des Sciences, 35042 Rennes, France

Communicated by M.F. Coste-Roy
Received 20 March 1988

Abstract

We define the complexity of Nash functions and give a Bezout theorem which uses this complexity. Then we obtain an upper bound for the sum of the Betti numbers of a Nash set.

1. Introduction

Let f be a polynomial map $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{k}, f=\left(f_{1}, \ldots, f_{k}\right)$ such that for each $i=1, \ldots, k$, $\operatorname{deg} f_{i} \leq d$ and $Z_{f}=f^{-1}(0)$. Milnor [7] and Thom [12] give an upper bound for the sum of the Betti numbers of Z_{f} :

$$
\begin{equation*}
\sum_{i=0}^{n} b_{i}\left(Z_{f}\right) \leq d(2 d-1)^{n-1} \tag{1}
\end{equation*}
$$

In particular, this gives an upper bound for the number of connected components of Z_{f}. This result is used by Ben-Or [1] to produce lower bounds in algorithm complexity. Another application can also be found in [5] for the number of configurations and polytopes in \mathbf{R}^{d}.

Several works have been carried out to improve the bounds in (1). These are mainly centered on 3 ways:
(1) Smith's theory and topology of complex projective complete intersection are used to obtain a better bound in equation (1) [3]. More precisely, note that the bound in (1) does not depend on k. The importance of the parts played by k and n is distinguished. Then, in some cases, a better bound than the previous one is obtained.
(2) The bound in (1) is expressed according to other invariants of f like number of monomials, additive complexity $[6,10,11]$.
(3) To obtain a similar relation to (1) in a 'larger class of functions' than the polynomials: Nash functions, Liouville functions, Pfaff functions, Already, we note that one of the main difficulties in this case is the definition of a notion, named complexity, which will replace the degree of a polynomial. The minimal properties that this complexity should satisfy are mentioned in [2].
Our aim is located in this third way, using as a frame the Nash functions: C^{∞} semi-algebraic functions, defined in an open semi-algebraic U of R^{n}, where R
denotes a real closed field. In the case of $R=\mathbf{R}$, Nash functions are equivalent to analytic functions which satisfy a polynomial equation $P(x, f(x))=0$, where P is a polynomial in $R[X, Y$] which does not vanish identically [4]. Then we introduce the notion of complexity of Nash function as being the total degree of its minimal polynomial. It is the obvious generalization of the degree of a polynomial.

In [9], we show that there exists a semi-algebraic set which parametrizes the set of Nash functions having complexity smaller or equal to an integer d. This leads to the existence of uniform bounds for quite a lot of problems: Łojasiewicz's inequality, Positivstellensatz, approximation theorem etc. In particular, we prove the finiteness of topological types of Nash sets for a given complexity.

In this paper, we prove a Bezout theorem for Nash function (Section 3). Then, following Milnor's ideas, we obtain an upper bound for the sum of the Betti numbers of a Nash set V, depending on the complexity of the different functions which define V.

2. Nash functions. Complexity

Let U an open semi-algebraic of R^{n}, where R denotes a real closed field.
A function $f: U \rightarrow R$ is called semi-algebraic if its graph is a semi-algebraic set of R^{n+1}.

A function $f: U \rightarrow R$ is a Nash function if it is semi-algebraic and C^{∞}. The following lemma is a well-known result about Nash functions [4]:
2.1. Lemma. There exists a polynomial $P \in R[X, Y]$, which does not vanish identically, such that for all $x \in U: P(x, f(x))=0$.
2.2. Definition. Let $f: U \rightarrow R$ be a Nash function.

The complexity of f, noted $c(f)$, is the minimum of the total degree of polynomials $P \in R[X, Y]$, which do not vanish identically and satisfy for all $x \in U$: $P(x, f(x))=0$, i.e.

$$
c(f)=\operatorname{Min}\{\operatorname{deg} P \mid P \in R[X, Y], P(x, f(x))=0 \text { for all } x \in U\} .
$$

This definition is then an obvious generalization of a polynomial degree.
Let us recall some results about complexity of a sum, a product, and a derivative.
2.3. Proposition. Let f and g be Nash functions. Then we have:

$$
\begin{align*}
& c(f+g) \leq c(f) \cdot c(g) . \tag{1}\\
& c(f \cdot g) \leq 2 c(f) \cdot c(g) . \tag{2}\\
& c\left(f^{2}\right) \leq 2 c(f) . \tag{3}
\end{align*}
$$

(4)

$$
c\left(f_{1}^{2}+\cdots+f_{p}^{2}\right) \leq 2^{p} \prod_{i=1}^{i-p} c\left(f_{i}\right)
$$

$$
\begin{equation*}
c\left(\frac{\partial f}{\partial x_{i}}\right) \leq c(f)^{2} \tag{5}
\end{equation*}
$$

Proof. (1, 2, 5) See [9].
(3) Let $P(x, y)=a_{n}(x) y^{n}+\cdots+a_{0}(x)$ be the minimal polynomial of f. We split $P(x, f(x))$ into 2 parts:

$$
P(x, f(x))=\sum_{i \text { even }} a_{i}(x) f^{i}+\sum_{i \text { odd }} a_{i}(x) f^{i}=0
$$

Then, we obtain

$$
\left(\sum_{i \mathrm{even}} a_{i}(x) f^{i}\right)=-f\left(\sum_{i \text { odd }} a_{i}(x) f^{i-1}\right)
$$

and

$$
\left(\sum_{i \text { even }} a_{i}(x) f^{i}\right)^{2}=f^{2}\left(\sum_{i \text { odd }} a_{i}(x) f^{i-1}\right)^{2}
$$

So

$$
Q(x, y)=\left(\sum_{i \mathrm{even}} a_{i}(x) y^{i}\right)^{2}-y^{2}\left(\sum_{i \mathrm{odd}} a_{i}(x) y^{i-1}\right)^{2}
$$

is a polynomial of degree less than or equal to $2 c(f)$ and $Q\left(x, f^{2}(x)\right)=0$.
(4) Easy consequence of (1) and (3).

3. Bezout theorem

3.1. Theorem. Let U be a connected open semi-algebraic of R^{n} and f_{1}, \ldots, f_{n} Nash functions of complexity c_{1}, \ldots, c_{n} defined in U.

Then the number of non-degenerated solutions of the system
(S) $\quad\left\{\begin{array}{c}f_{1}(x)=0, \\ \vdots \\ f_{n}(x)=0\end{array}\right.$
is finite and less than or equal to $\prod_{i=1}^{n} c_{i}$.
Proof. A point $x_{0}=\left(x_{1}^{0}, \ldots, x_{n}^{0}\right) \in R^{n}$ is a non-degenerated solution of (S) if and only if the jacobian $J(x)$ of $f_{1}(x), \ldots, f_{n}(x)$ is not zero at x_{0}.

$$
J\left(x_{0}\right)=\left|\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}}\left(x_{0}\right) & \ldots & \frac{\partial f_{1}}{\partial x_{n}}\left(x_{0}\right) \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{n}}{\partial x_{1}}\left(x_{0}\right) & \ldots \frac{\partial f_{n}}{\partial x_{n}}\left(x_{0}\right)
\end{array}\right|
$$

Let $F_{1}(x, y), \ldots, F_{n}(x, y)$ be polynomials of minimal total degree such that $F_{i}\left(x, f_{i}(x)\right)=0$.

Consider the system
(Σ) $\quad\left\{\begin{array}{c}F_{1}(x, 0)=0, \\ \vdots \\ F_{n}(x, 0)=0 .\end{array}\right.$
Λ ny non-degenerated solution x_{0} of (S) is a solution of (Σ). Then we can bound, by using the Bezout theorem for polynomials, the number of non-degenerated solutions of (S) by those of (Σ).
However, x_{0} may be a degenerated solution of (Σ) and is not taken into account when we apply the Bezout Theorem to this system. Therefore we must proceed differently.
Let $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in \mathbf{R}^{n}$. Consider the system (S_{ε}) obtained by making a 'small perturbation to S^{\prime}.

$$
\left\{\begin{array}{c}
f_{1}(x)=\varepsilon_{1} \\
\vdots \\
f_{n}(x)=\varepsilon_{n}
\end{array}\right.
$$

Let x_{0} be a non-degenerated solution of (S). By the local inverse theorem, there exists a non-degenerated solution $x=\varphi(\varepsilon)$, near x_{0} for ε close to 0 .

We claim that we can choose $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$ such that $\varphi(\varepsilon)$ is also a nondegenerated solution of the system $\left(\Sigma_{\varepsilon}\right)$:

$$
\left\{\begin{array}{c}
F_{1}\left(\varphi(\varepsilon), \varepsilon_{1}\right)=0 \\
\vdots \\
F_{n}\left(\varphi(\varepsilon), \varepsilon_{n}\right)-0
\end{array}\right.
$$

Indeed, we have

$$
\frac{\partial F_{i}}{\partial x_{j}}\left(\varphi(\varepsilon), \varepsilon_{i}\right)=-\frac{\partial F_{i}}{\partial y}\left(\varphi(\varepsilon), \varepsilon_{i}\right) \frac{\partial f_{i}}{\partial x_{j}}(\varphi(\varepsilon)) .
$$

So,

$$
\begin{aligned}
J(F(\varphi(\varepsilon))) & =\left|\begin{array}{ccc}
\frac{\partial F_{1}}{\partial x_{1}}\left(\varphi(\varepsilon), \varepsilon_{1}\right) & \ldots \frac{\partial F_{1}}{\partial x_{n}}\left(\varphi(\varepsilon), \varepsilon_{1}\right) \\
\vdots & \ddots & \vdots \\
\frac{\partial F_{n}}{\partial x_{1}}\left(\varphi(\varepsilon), \varepsilon_{n}\right) \ldots \frac{\partial F_{n}}{\partial x_{n}}\left(\varphi(\varepsilon), \varepsilon_{n}\right)
\end{array}\right| \\
& =(-1)^{n} J(\varphi(\varepsilon)) \prod_{i=1}^{n} \frac{\partial F_{i}}{\partial y}\left(\varphi(\varepsilon), \varepsilon_{i}\right) .
\end{aligned}
$$

Since $\varphi(\varepsilon)$ is a non-degenerated solution of $\left(\mathrm{S}_{\varepsilon}\right)$, also $J(\varphi(\varepsilon)) \neq 0$. Then it is
enough to prove that the set of germs at 0 of ε such that

$$
\prod_{i=1}^{n} \frac{\partial F_{i}}{\partial y}\left(\varphi(\varepsilon), \varepsilon_{i}\right)=0
$$

is of dimension less than or equal to n.
If not, we may assume that $\partial F_{1} / \partial y\left(\varphi(\varepsilon), \varepsilon_{1}\right)=0$ in a neighbourhood W of 0 .

$$
\frac{\partial F_{1}}{\partial y}\left(x, f_{1}(x)\right)=\frac{\partial F_{1}}{\partial y}\left(\varphi(\varepsilon), \varepsilon_{1}\right)
$$

will vanish identically in the ncighbourhood $U \cap f^{-1}(W)$ of x_{0}. Since F_{1} is the minimal polynomial of f_{1}, this gives a contradiction.
Then the number of non-degenerated solutions of (S) is bounded by the number of non-degenerated solutions of $\left(\Sigma_{\varepsilon}\right)$ which is less than or equal to $\prod_{i=1}^{n} c_{i}$ by the Bezout theorem for polynomials.

4. Bounds for the sum of the Betti numbers of a Nash set

4.1. Definition. A Nash set V in \mathbf{R}^{n} is a semi-algebraic set which can be represented as

$$
V=\left\{x \in \mathbf{R}^{n} \mid f_{1}(x)=\cdots=f_{p}(x)=0\right\}
$$

where f_{i} denotes a Nash function.
Let V be a Nash set. We denote by $H_{i}(V)$ the i th homology group of V with coefficients in $\mathbf{Z} / 2 \mathbf{Z} . H_{i}(V)$ is a $\mathbf{Z} / 2 \mathbf{Z}$-vector space; its dimension, denoted by $b_{i}(V)$, is called the i th Betti number of V. In particular, $b_{0}(V)$ is the number of connected components of V. Evcry $b_{i}(V)$ is finite and is null if $i \geq \operatorname{dim}(V)$. Then, the sum of the Betti numbers of V is always finite.

Let us recall that a function $g: V \rightarrow \mathbf{R}$ is a Morse function if g has only nondegenerate critical points.

On the other hand, according to Morse theory [8], if $g: V \rightarrow \mathbf{R}$ is a Morse function with V compact and non-singular, then the sum of the Betti numbers of V is less than or equal to the number of critical points of g.
4.2. Theorem. Let V be a Nash set, compact and non-singular, defined by $f=0$, where f denotes a Nash function of complexity $\leq d$. Then

$$
\sum\left(b_{i}(V)\right) \leq d^{2 n-1} .
$$

Proof. We follow Milnor's proof [7] step by step for introducing some control and explicit bounds. Let $\eta: V \rightarrow S^{n-1}$ be the function which assigns to each point $x \in V$ the unit normal vector. The set of critical values of η has dimension less than $(n-1)$. Then, there exist 2 points of S^{n-1} which are not critical values of η. Up to a rota-
tion, we may assume that these points are $(0, \ldots, 1)$ and $(0, \ldots,-1)$. Remark that a rotation affects only the x_{i} and does not change the complexity. Let $h: V \rightarrow \mathbf{R}$ be the 'height function': $h\left(x_{1}, \ldots, x_{n}\right)=x_{n}$. Let us show that h is a Morse function. Let y be a critical point of h. We can take near y local coordinates: $x_{1}=u_{1}, \ldots, x_{n-1}=$ $u_{n-1}, x_{n}=h\left(u_{1}, \ldots, u_{n-1}\right)$. We can compute that

$$
\frac{\partial \eta_{j}}{\partial u_{i}}(y)= \pm \frac{\partial^{2} h}{\partial u_{i} \partial u_{j}}(y) .
$$

The matrix $\left(\partial^{2} h / \partial u_{i} \partial u_{j}(y)\right)$ is non-singular; this means that h is a Morse function.
It follows, by Morse theory, that the sum of the Betti numbers of V is less than or equal to the number of critical points of h. They are the solutions of the system
(S) $\left\{\begin{aligned} \frac{\partial f}{\partial x_{1}} & =0, \\ & \vdots \\ \frac{\partial f}{\partial x_{n-1}} & =0, \\ f & =0 .\end{aligned}\right.$

Since h is a Morse function, y is a non-degenerated solution of (S). Hence, we can apply Bezout theorem to the system (S). Since each $\partial f / \partial x_{i}$ is a Nash function of complexity less than or equal to $c(f)^{2}=d^{2}$, the theorem follows immediately.

Now we want to remove the hypothesis that V is compact and non-singular.
4.3. Theorem. Let V be a Nash set defined by $f_{1}(x)=\cdots=f_{p}(x)=0$ where f_{i} denotes a Nash function of complexity less than or equal to d.

Then the sum of the Betti numbers of V is less than or equal to $\frac{1}{2}\left(2^{p+1} d^{p}\right)^{2 n-1}$.
Proof. For $R \geq 0$ sufficiently large, the inclusion $\overline{B(0, R)} \cap V \rightarrow V$ is a deformation retract. So, it is enough to bound $\sum b_{i}(\overline{B(0, R)} \cap V)$. For a given $\varepsilon \geq 0$, let F_{ε} be the Nash function defined by

$$
F_{\varepsilon}(x)=f_{1}^{2}(x)+\cdots+f_{p}^{2}(x)+\varepsilon^{2}\|x\|^{2}-R^{2} .
$$

$F_{\varepsilon}(x)$ has a complexity less than or cqual to $2^{p+1} d^{p}\left(\|x\|^{2}\right.$ is of complexity 2).
Let $K_{\varepsilon}=\left\{x \in \mathbf{R}^{n} \mid F_{\varepsilon}(x) \leq 0\right\} . K_{\varepsilon}$ is a compact set since it is contained in the disk $B(0, R / \varepsilon)$.

On the other hand, Sard's theorem gives us a real $a \geq 0$ such that for $\varepsilon \in] 0, a[$, the boundary $\partial K_{\varepsilon}=\left\{x \in \mathbf{R}^{n} \mid F_{\varepsilon}(x)=0\right\}$ of K_{ε} is non-singular. Then we can apply the above theorem to ∂K_{ε} :

$$
\sum b_{i}\left(\partial K_{\varepsilon}\right) \leq\left(2^{p+1} d^{p}\right)^{2 n-1} .
$$

Now applying Alexander duality, it follows that

$$
\sum b_{i}\left(K_{\varepsilon}\right) \leq \frac{1}{2} \sum b_{i}\left(\partial K_{\varepsilon}\right) \leq \frac{1}{2}\left(2^{p+1} d^{p}\right)^{2 n-1} .
$$

Since

$$
\overline{B(0, R)} \cap V=\bigcap_{\varepsilon \in] 0, a \mid} K_{\varepsilon}
$$

and the fact that these sets can be triangulated, we have

$$
H_{i}(\overline{B(0, R)} \cap V)=\lim _{\leftarrow} H_{i}\left(K_{\varepsilon}\right) .
$$

So,

$$
\sum b_{i}(V)=\sum b_{i}(\overline{B(0, R)} \cap V)=\sum b_{i}\left(K_{\varepsilon}\right) \leq \frac{1}{2}\left(2^{p+1} d^{p}\right)^{2 n-1}
$$

References

[1] M. Ben-Or, Lower bounds for algebraic computation trees, Proc. 15th. ACM Ann. Symp. on theory of Comput. (1983) 80-86.
[2] R. Benedetti, Finiteness for the topology of semi-algebraic sets of bounded complexity. Some examples. Séminaire sur la Géométrie Algébrique Réelle, Paris VII, 1986.
[3] R. Benedetti and J.J. Risler, On the number of connected components of a real algebraic set, Laboratoire de Math. École Normale Supérieure 88-11, Sept. 1988.
[4] J. Bochnak, M. Coste and M.E. Roy, Géometrie Algébrique Réelle, Ergebnisse der Mathematik 12 (Springer, Berlin, 1987).
[5] J.E. Goodman and R. Pollack, Upper bounds for configurations and polytopes in \mathbf{R}^{d}. Discrete Comput. Geom. 1 (1986) 219-227.
[6] A. Khovansky, Théorème de Bezout pour les fonctions de Liouville, Preprint IHES/M/81/45, Sept. 1981.
[7] J. Milnor, On the Betti numbers of real varieties. Proc. Amer. Math. Soc. 15 (1964) 275-280.
[8] J. Milnor, Morse Theory (Princeton University Press, Princeton, NJ, 1963).
[9] R. Ramanakoraisina, Complexité des fonctions de Nash, Comm. Algebra 17 (6) (1989) 1395-1406.
[10] J.J. Risler, Complexité et Géometrie Algébrique Réelle d'après A. Khovansky, Séminaire Bourbaki 637, 1984-1985.
[11] J.J. Risler, Additive complexity and zeros of real polynomials. SIAM J. Comput. 14 (1) (1985) 178-184.
[12] R. Thom, Sur l'homologie des variétés différentiables (Princeton University Press, Princeton, NJ, 1965).

