Journal of Pure and Applied Algebra 61 (1989) 295-301 North-Holland

BEZOUT THEOREM FOR NASH FUNCTIONS

R. RAMANAKORAISINA

UER de Mathématiques, Faculté des Sciences, 35042 Rennes, France

Communicated by M.F. Coste-Roy Received 20 March 1988

We define the complexity of Nash functions and give a Bezout theorem which uses this complexity. Then we obtain an upper bound for the sum of the Betti numbers of a Nash set.

1. Introduction

Let f be a polynomial map $f: \mathbb{R}^n \to \mathbb{R}^k$, $f=(f_1, ..., f_k)$ such that for each i=1, ..., k, deg $f_i \leq d$ and $Z_f = f^{-1}(0)$. Milnor [7] and Thom [12] give an upper bound for the sum of the Betti numbers of Z_f :

$$\sum_{i=0}^{n} b_i(Z_f) \le d(2d-1)^{n-1}.$$
(1)

In particular, this gives an upper bound for the number of connected components of Z_f . This result is used by Ben-Or [1] to produce lower bounds in algorithm complexity. Another application can also be found in [5] for the number of configurations and polytopes in \mathbb{R}^d .

Several works have been carried out to improve the bounds in (1). These are mainly centered on 3 ways:

(1) Smith's theory and topology of complex projective complete intersection are used to obtain a better bound in equation (1) [3]. More precisely, note that the bound in (1) does not depend on k. The importance of the parts played by k and n is distinguished. Then, in some cases, a better bound than the previous one is obtained.

(2) The bound in (1) is expressed according to other invariants of f like number of monomials, additive complexity [6, 10, 11].

(3) To obtain a similar relation to (1) in a 'larger class of functions' than the polynomials: Nash functions, Liouville functions, Pfaff functions, Already, we note that one of the main difficulties in this case is the definition of a notion, named complexity, which will replace the degree of a polynomial. The minimal properties that this complexity should satisfy are mentioned in [2].

Our aim is located in this third way, using as a frame the Nash functions: C^{∞} semi-algebraic functions, defined in an open semi-algebraic U of R^n , where R

0022-4049/89/\$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)

denotes a real closed field. In the case of $R = \mathbf{R}$, Nash functions are equivalent to analytic functions which satisfy a polynomial equation P(x, f(x)) = 0, where P is a polynomial in R[X, Y] which does not vanish identically [4]. Then we introduce the notion of complexity of Nash function as being the total degree of its minimal polynomial. It is the obvious generalization of the degree of a polynomial.

In [9], we show that there exists a semi-algebraic set which parametrizes the set of Nash functions having complexity smaller or equal to an integer d. This leads to the existence of uniform bounds for quite a lot of problems: Łojasiewicz's inequality, Positivstellensatz, approximation theorem etc. In particular, we prove the finiteness of topological types of Nash sets for a given complexity.

In this paper, we prove a Bezout theorem for Nash function (Section 3). Then, following Milnor's ideas, we obtain an upper bound for the sum of the Betti numbers of a Nash set V, depending on the complexity of the different functions which define V.

2. Nash functions. Complexity

Let U an open semi-algebraic of \mathbb{R}^n , where R denotes a real closed field.

A function $f: U \to R$ is called semi-algebraic if its graph is a semi-algebraic set of R^{n+1} .

A function $f: U \to R$ is a Nash function if it is semi-algebraic and C^{∞} . The following lemma is a well-known result about Nash functions [4]:

2.1. Lemma. There exists a polynomial $P \in R[X, Y]$, which does not vanish identically, such that for all $x \in U$: P(x, f(x)) = 0. \Box

2.2. Definition. Let $f: U \rightarrow R$ be a Nash function.

The complexity of f, noted c(f), is the minimum of the total degree of polynomials $P \in R[X, Y]$, which do not vanish identically and satisfy for all $x \in U$: P(x, f(x)) = 0, i.e.

 $c(f) = \operatorname{Min} \{ \deg P \mid P \in R[X, Y], P(x, f(x)) = 0 \text{ for all } x \in U \}.$

This definition is then an obvious generalization of a polynomial degree. Let us recall some results about complexity of a sum, a product, and a derivative.

2.3. Proposition. Let f and g be Nash functions. Then we have:

(1)
$$c(f+g) \leq c(f) \cdot c(g).$$

(2) $c(f \cdot g) \leq 2c(f) \cdot c(g).$

$$(3) c(f^2) \le 2c(f)$$

(4)
$$c(f_1^2 + \dots + f_p^2) \le 2^p \prod_{i=1}^{i=p} c(f_i).$$

(5)
$$c\left(\frac{\partial f}{\partial x_i}\right) \leq c(f)^2.$$

Proof. (1, 2, 5) See [9].

(3) Let $P(x, y) = a_n(x)y^n + \dots + a_0(x)$ be the minimal polynomial of f. We split P(x, f(x)) into 2 parts:

$$P(x, f(x)) = \sum_{i \text{ even}} a_i(x) f^i + \sum_{i \text{ odd}} a_i(x) f^i = 0.$$

Then, we obtain

$$\left(\sum_{i \text{ even}} a_i(x) f^i\right) = -f\left(\sum_{i \text{ odd}} a_i(x) f^{i-1}\right)$$

and

$$\left(\sum_{i \text{ even}} a_i(x)f^i\right)^2 = f^2 \left(\sum_{i \text{ odd}} a_i(x)f^{i-1}\right)^2.$$

So

$$Q(x, y) = \left(\sum_{i \text{ even}} a_i(x) y^i\right)^2 - y^2 \left(\sum_{i \text{ odd}} a_i(x) y^{i-1}\right)^2$$

is a polynomial of degree less than or equal to 2c(f) and $Q(x, f^2(x)) = 0$.

(4) Easy consequence of (1) and (3). \Box

3. Bezout theorem

3.1. Theorem. Let U be a connected open semi-algebraic of \mathbb{R}^n and f_1, \ldots, f_n Nash functions of complexity c_1, \ldots, c_n defined in U.

Then the number of non-degenerated solutions of the system

(S)
$$\begin{cases} f_1(x) = 0, \\ \vdots \\ f_n(x) = 0 \end{cases}$$

is finite and less than or equal to $\prod_{i=1}^{n} c_i$.

Proof. A point $x_0 = (x_1^0, ..., x_n^0) \in \mathbb{R}^n$ is a non-degenerated solution of (S) if and only if the jacobian J(x) of $f_1(x), ..., f_n(x)$ is not zero at x_0 .

$$J(x_0) = \begin{vmatrix} \frac{\partial f_1}{\partial x_1}(x_0) & \dots & \frac{\partial f_1}{\partial x_n}(x_0) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1}(x_0) & \dots & \frac{\partial f_n}{\partial x_n}(x_0) \end{vmatrix}$$

Let $F_1(x, y), \dots, F_n(x, y)$ be polynomials of minimal total degree such that $F_i(x, f_i(x)) = 0$.

Consider the system

(
$$\Sigma$$
)
$$\begin{cases} F_1(x,0) = 0, \\ \vdots \\ F_n(x,0) = 0. \end{cases}$$

Any non-degenerated solution x_0 of (S) is a solution of (Σ) . Then we can bound, by using the Bezout theorem for polynomials, the number of non-degenerated solutions of (S) by those of (Σ) .

However, x_0 may be a degenerated solution of (Σ) and is not taken into account when we apply the Bezout Theorem to this system. Therefore we must proceed differently.

Let $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n) \in \mathbf{R}^n$. Consider the system (S_{ε}) obtained by making a 'small perturbation to S'.

$$\begin{cases} f_1(x) = \varepsilon_1, \\ \vdots \\ f_n(x) = \varepsilon_n. \end{cases}$$

Let x_0 be a non-degenerated solution of (S). By the local inverse theorem, there exists a non-degenerated solution $x = \varphi(\varepsilon)$, near x_0 for ε close to 0.

We claim that we can choose $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n)$ such that $\varphi(\varepsilon)$ is also a nondegenerated solution of the system (Σ_{ε}) :

$$\begin{cases} F_1(\varphi(\varepsilon),\varepsilon_1)=0,\\ \vdots\\ F_n(\varphi(\varepsilon),\varepsilon_n)=0. \end{cases}$$

Indeed, we have

$$\frac{\partial F_i}{\partial x_j}(\varphi(\varepsilon),\varepsilon_i) = -\frac{\partial F_i}{\partial y}(\varphi(\varepsilon),\varepsilon_i)\frac{\partial f_i}{\partial x_j}(\varphi(\varepsilon)).$$

So,

$$J(F(\varphi(\varepsilon))) = \begin{vmatrix} \frac{\partial F_1}{\partial x_1}(\varphi(\varepsilon), \varepsilon_1) \dots \frac{\partial F_1}{\partial x_n}(\varphi(\varepsilon), \varepsilon_1) \\ \vdots & \ddots & \vdots \\ \frac{\partial F_n}{\partial x_1}(\varphi(\varepsilon), \varepsilon_n) \dots \frac{\partial F_n}{\partial x_n}(\varphi(\varepsilon), \varepsilon_n) \\ = (-1)^n J(\varphi(\varepsilon)) \prod_{i=1}^n \frac{\partial F_i}{\partial y}(\varphi(\varepsilon), \varepsilon_i). \end{cases}$$

Since $\varphi(\varepsilon)$ is a non-degenerated solution of (S_{ε}) , also $J(\varphi(\varepsilon)) \neq 0$. Then it is

298

enough to prove that the set of germs at 0 of ε such that

$$\prod_{i=1}^{n} \frac{\partial F_i}{\partial y}(\varphi(\varepsilon), \varepsilon_i) = 0$$

is of dimension less than or equal to n.

If not, we may assume that $\partial F_1 / \partial y(\varphi(\varepsilon), \varepsilon_1) = 0$ in a neighbourhood W of 0.

$$\frac{\partial F_1}{\partial y}(x,f_1(x)) = \frac{\partial F_1}{\partial y}(\varphi(\varepsilon),\varepsilon_1)$$

will vanish identically in the neighbourhood $U \cap f^{-1}(W)$ of x_0 . Since F_1 is the minimal polynomial of f_1 , this gives a contradiction.

Then the number of non-degenerated solutions of (S) is bounded by the number of non-degenerated solutions of (Σ_{ε}) which is less than or equal to $\prod_{i=1}^{n} c_i$ by the Bezout theorem for polynomials. \Box

4. Bounds for the sum of the Betti numbers of a Nash set

4.1. Definition. A Nash set V in \mathbf{R}^n is a semi-algebraic set which can be represented as

$$V = \{x \in \mathbf{R}^n \mid f_1(x) = \dots = f_n(x) = 0\}$$

where f_i denotes a Nash function.

Let V be a Nash set. We denote by $H_i(V)$ the *i*th homology group of V with coefficients in $\mathbb{Z}/2\mathbb{Z}$. $H_i(V)$ is a $\mathbb{Z}/2\mathbb{Z}$ -vector space; its dimension, denoted by $b_i(V)$, is called the *i*th Betti number of V. In particular, $b_0(V)$ is the number of connected components of V. Every $b_i(V)$ is finite and is null if $i \ge \dim(V)$. Then, the sum of the Betti numbers of V is always finite.

Let us recall that a function $g: V \to \mathbf{R}$ is a Morse function if g has only nondegenerate critical points.

On the other hand, according to Morse theory [8], if $g: V \to \mathbf{R}$ is a Morse function with V compact and non-singular, then the sum of the Betti numbers of V is less than or equal to the number of critical points of g.

4.2. Theorem. Let V be a Nash set, compact and non-singular, defined by f=0, where f denotes a Nash function of complexity $\leq d$. Then

$$\sum (b_i(V)) \le d^{2n-1}.$$

Proof. We follow Milnor's proof [7] step by step for introducing some control and explicit bounds. Let $\eta: V \to S^{n-1}$ be the function which assigns to each point $x \in V$ the unit normal vector. The set of critical values of η has dimension less than (n-1). Then, there exist 2 points of S^{n-1} which are not critical values of η . Up to a rota-

tion, we may assume that these points are (0, ..., 1) and (0, ..., -1). Remark that a rotation affects only the x_i and does not change the complexity. Let $h: V \to \mathbb{R}$ be the 'height function': $h(x_1, ..., x_n) = x_n$. Let us show that h is a Morse function. Let y be a critical point of h. We can take near y local coordinates: $x_1 = u_1, ..., x_{n-1} = u_{n-1}, x_n = h(u_1, ..., u_{n-1})$. We can compute that

$$\frac{\partial \eta_j}{\partial u_i}(y) = \pm \frac{\partial^2 h}{\partial u_i \partial u_j}(y).$$

The matrix $(\partial^2 h/\partial u_i \partial u_j(y))$ is non-singular; this means that h is a Morse function.

It follows, by Morse theory, that the sum of the Betti numbers of V is less than or equal to the number of critical points of h. They are the solutions of the system

(S)
$$\begin{cases} \frac{\partial f}{\partial x_1} = 0, \\ \vdots \\ \frac{\partial f}{\partial x_{n-1}} = 0, \\ f = 0. \end{cases}$$

Since h is a Morse function, y is a non-degenerated solution of (S). Hence, we can apply Bezout theorem to the system (S). Since each $\partial f/\partial x_i$ is a Nash function of complexity less than or equal to $c(f)^2 = d^2$, the theorem follows immediately. \Box

Now we want to remove the hypothesis that V is compact and non-singular.

4.3. Theorem. Let V be a Nash set defined by $f_1(x) = \cdots = f_p(x) = 0$ where f_i denotes a Nash function of complexity less than or equal to d.

Then the sum of the Betti numbers of V is less than or equal to $\frac{1}{2}(2^{p+1}d^p)^{2n-1}$.

Proof. For $R \ge 0$ sufficiently large, the inclusion $B(0, R) \cap V \to V$ is a deformation retract. So, it is enough to bound $\sum b_i(B(0, R) \cap V)$. For a given $\varepsilon \ge 0$, let F_{ε} be the Nash function defined by

 $F_{\varepsilon}(x) = f_1^2(x) + \dots + f_p^2(x) + \varepsilon^2 ||x||^2 - R^2.$

 $F_{\varepsilon}(x)$ has a complexity less than or equal to $2^{p+1}d^p$ ($||x||^2$ is of complexity 2).

Let $K_{\varepsilon} = \{x \in \mathbb{R}^n \mid F_{\varepsilon}(x) \le 0\}$. K_{ε} is a compact set since it is contained in the disk $B(0, R/\varepsilon)$.

On the other hand, Sard's theorem gives us a real $a \ge 0$ such that for $\varepsilon \in]0, a[$, the boundary $\partial K_{\varepsilon} = \{x \in \mathbb{R}^n \mid F_{\varepsilon}(x) = 0\}$ of K_{ε} is non-singular. Then we can apply the above theorem to ∂K_{ε} :

$$\sum b_i(\partial K_{\varepsilon}) \leq (2^{p+1}d^p)^{2n-1}.$$

Now applying Alexander duality, it follows that

$$\sum b_i(K_{\varepsilon}) \leq \frac{1}{2} \sum b_i(\partial K_{\varepsilon}) \leq \frac{1}{2} (2^{p+1}d^p)^{2n-1}.$$

Since

$$\overline{B(0,R)} \cap V = \bigcap_{\varepsilon \in]0,a[} K_{\varepsilon}$$

and the fact that these sets can be triangulated, we have

$$H_i(B(0,R) \cap V) = \lim H_i(K_{\epsilon})$$

So,

$$\sum b_i(V) = \sum b_i(\overline{B(0,R)} \cap V) = \sum b_i(K_{\varepsilon}) \le \frac{1}{2} (2^{p+1}d^p)^{2n-1}. \quad \Box$$

References

- M. Ben-Or, Lower bounds for algebraic computation trees, Proc. 15th. ACM Ann. Symp. on theory of Comput. (1983) 80-86.
- [2] R. Benedetti, Finiteness for the topology of semi-algebraic sets of bounded complexity. Some examples. Séminaire sur la Géométrie Algébrique Réelle, Paris VII, 1986.
- [3] R. Benedetti and J.J. Risler, On the number of connected components of a real algebraic set, Laboratoire de Math. École Normale Supérieure 88-11, Sept. 1988.
- [4] J. Bochnak, M. Coste and M.E. Roy, Géometrie Algébrique Réelle, Ergebnisse der Mathematik 12 (Springer, Berlin, 1987).
- [5] J.E. Goodman and R. Pollack, Upper bounds for configurations and polytopes in R^d. Discrete Comput. Geom. 1 (1986) 219-227.
- [6] A. Khovansky, Théorème de Bezout pour les fonctions de Liouville, Preprint IHES/M/81/45, Sept. 1981.
- [7] J. Milnor, On the Betti numbers of real varieties. Proc. Amer. Math. Soc. 15 (1964) 275-280.
- [8] J. Milnor, Morse Theory (Princeton University Press, Princeton, NJ, 1963).
- [9] R. Ramanakoraisina, Complexité des fonctions de Nash, Comm. Algebra 17 (6) (1989) 1395-1406.
- [10] J.J. Risler, Complexité et Géometrie Algébrique Réelle d'après A. Khovansky, Séminaire Bourbaki 637, 1984–1985.
- [11] J.J. Risler, Additive complexity and zeros of real polynomials. SIAM J. Comput. 14 (1) (1985) 178-184.
- [12] R. Thom, Sur l'homologie des variétés différentiables (Princeton University Press, Princeton, NJ, 1965).