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We define the complexity of Nash functions and give a Bezout theorem which uses this com- 

plexity. Then we obtain an upper bound for the sum of the Betti numbers of a Nash set. 

1. Introduction 

Let f be a polynomial map f : R” -, Rk, f = ( fi ,..., fk)suchthatforeachi=l ,..., k, 

degf,rd and Z,=f-'(0). Milnor [7] and Thorn [12] give an upper bound for the 

sum of the Betti numbers of Zf: 

i bi(Zf)sd(2d- l)+ 
i=O 

(1) 

In particular, this gives an upper bound for the number of connected components 

of Zf. This result is used by Ben-Or [l] to produce lower bounds in algorithm com- 

plexity. Another application can also be found in [5] for the number of configura- 

tions and polytopes in Rd. 

Several works have been carried out to improve the bounds in (1). These are main- 

ly centered on 3 ways: 

(1) Smith’s theory and topology of complex projective complete intersection are 

used to obtain a better bound in equation (1) [3]. More precisely, note that the 

bound in (1) does not depend on k. The importance of the parts played by k and 

n is distinguished. Then, in some cases, a better bound than the previous one is ob- 

tained. 

(2) The bound in (1) is expressed according to other invariants off like number 

of monomials, additive complexity [6, 10, 111. 

(3) To obtain a similar relation to (1) in a ‘larger class of functions’ than the 

polynomials: Nash functions, Liouville functions, Pfaff functions, . . . . Already, we 

note that one of the main difficulties in this case is the definition of a notion, named 

complexity, which will replace the degree of a polynomial. The minimal properties 

that this complexity should satisfy are mentioned in [2]. 
Our aim is located in this third way, using as a frame the Nash functions: C” 

semi-algebraic functions, defined in an open semi-algebraic U of R", where R 
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denotes a real closed field. In the case of R = R, Nash functions are equivalent to 

analytic functions which satisfy a polynomial equation P(x,f(x)) = 0, where P is a 

polynomial in R[X, Y] which does not vanish identically [4]. Then we introduce the 

notion of complexity of Nash function as being the total degree of its minimal 

polynomial. It is the obvious generalization of the degree of a polynomial. 

In [9], we show that there exists a semi-algebraic set which parametrizes the set 

of Nash functions having complexity smaller or equal to an integer d. This leads to 

the existence of uniform bounds for quite a lot of problems: Lojasiewicz’s inequal- 

ity, Positivstellensatz, approximation theorem etc. In particular, we prove the 

finiteness of topological types of Nash sets for a given complexity. 

In this paper, we prove a Bezout theorem for Nash function (Section 3). Then, 

folIowing Milnor’s ideas, we obtain an upper bound for the sum of the Betti 

numbers of a Nash set V, depending on the complexity of the different functions 

which define V. 

2. Nash functions. Complexity 

Let U an open semi-algebraic of R”, where R denotes a real closed field. 

A functionf : U -+ R is called semi-algebraic if its graph is a semi-algebraic set of 
n+l R . 
A function f : U+ R is a Nash function if it is semi-algebraic and C”. The 

following lemma is a well-known result about Nash functions [4]: 

2.1. Lemma. There exists a polynomial PE R[X, Y], which does not vanish iden- 
tically, such that for all x E U : P(x, f (x)) = 0. 0 

2.2. Definition. Let f : U+ R be a Nash function. 

The complexity of f, noted c(f), is the minimum of the total degree of 

polynomials PER [X, Y], which do not vanish identically and satisfy for all XE U: 
P(x, f (x)) = 0, i.e. 

c(f)=Min{degP)P~R[X,Y], P(x,f(x))=O for allxeU}. 

This definition is then an obvious generalization of a polynomial degree. 

Let us recall some results about complexity of a sum, a product, and a derivative. 

2.3. Proposition. Let f and g be Nash functions. Then we have: 

(1) c(f + g) 5 c(f) * c(g). 

(2) c(f * s) 5 Wf) . cm. 

(3) c(f 2, 5 2c(f ). 
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(5) ( > af 5C(f)2. ’ axi 

Proof. (1, 2, 5) See [9]. 

(3) Let P(x,Y) = aJx)y” + a.. +ao(x) be the minimal polynomial of f. We split 
P(x,f(x)) into 2 parts: 

P(X,f(X)) = C ai(X) C ai(X) 0. 
ieven iodd 

Then, we obtain 

and 

( c aj(x)$ = -~(;~daMP] 
i even 

( C ai(x)f’)l ‘f2 (& ai(xlfi-1>2. 

i even 

so 

Q&Y) = ( iLn ai(x)Yy -Y’( J, ai(x)Yi-‘>’ 

is a polynomial of degree less than or equal to 2c(f) and Q(x,f2(x)) = 0. 
(4) Easy consequence of (1) and (3). 0 

3. Bezout theorem 

3.1. Theorem. Let U be a connected open semi-algebraic of R” and f,, . . . , f,, Nash 
functions of complexity c,, . . . , c,, defined in U. 

Then the number of non-degenerated solutions of the system 

f,(x) = 09 
(9 

1 f,(x) ‘0 

is finite and less than or equal to nr=, c,. 

Proof. A point x0 = (xy, . . . , x,“) E R” is a non-degenerated solution of (S) if and only 
if the jacobian J(x) of fi(x), . . ..f.,(x) is not zero at x0. 

J(xo) = 

%(x0) ..$(x,, 
1 n 

.*. 

f& (x0) . . . 2 (x0) 
1 n 
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Let F,(x,_H, . . . . F’(x,y) be polynomials of minimal total degree such that 

Fi(x,J;:(X))=O. 
Consider the system 

F,(x,O) = 0, 

G) 

{ : F,(x,O) 1 0. 

Any non-degenerated solution x0 of (S) is a solution of(C). Then we can bound, 

by using the Bezout theorem for polynomials, the number of non-degenerated solu- 

tions of (S) by those of (C). 

However, x0 may be a degenerated solution of (C) and is not taken into account 

when we apply the Bezout Theorem to this system. Therefore we must proceed dif- 

ferently. 

Let E=(E~,...,E,)ER”. Consider the system (S,) obtained by making a ‘small 

perturbation to S’. 

&f-i(X) = El, 

1 : f,(x) = En- 

Let x0 be a non-degenerated solution of (S). By the local inverse theorem, there 

exists a non-degenerated solution x = (P(E), near x0 for E close to 0. 

We claim that we can choose E = (ei, . . . , E,) such that P(E) is also a non- 

degenerated solution of the system (C,): 

1 

4 (V)(E), ai) = 0, 

F,&(s), a,) = 0. 

Indeed, we have 

2 (P(E), Ei) = - t$ (V)CE), &i)$ (V)(E))* 
J J 

so, 

Since V)(E) is a non-degenerated solution of (S,), also J(qr(e))#O. Then it is 
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enough to prove that the set of germs at 0 of E such that 

is of dimension less than or equal to n. 

If not, we may assume that aFi/ay(&e), ci) = 0 in a neighbourhood W of 0. 

will vanish identically in the neighbourhood U rl f -l(W) of x0. Since Fi is the 

minimal polynomial off,, this gives a contradiction. 

Then the number of non-degenerated solutions of (S) is bounded by the number 

of non-degenerated solutions of (C,) which is less than or equal to ny=, ci by the 

Bezout theorem for polynomials. q 

4. Bounds for the sum of the Betti numbers of a Nash set 

4.1. Definition. A Nash set I/ in R” is a semi-algebraic set which can be 

represented as 

V= {xER” 1 fi(x) = .a. =fP(x) = 0} 

where fi denotes a Nash function. 

Let I/ be a Nash set. We denote by Hi(V) the ith homology group of I/ with 

coefficients in Z/22. Hi(V) is a Z/2Z-vector space; its dimension, denoted by 

b,(V), is called the ith Betti number of V. In particular, b,(V) is the number of 

connected components of V. Every b,(V) is finite and is null if i2 dim(V). Then, 

the sum of the Betti numbers of I/ is always finite. 

Let us recall that a function g: V + R is a Morse function if g has only non- 

degenerate critical points. 

On the other hand, according to Morse theory [8], if g : if-+ R is a Morse function 

with V compact and non-singular, then the sum of the Betti numbers of T/is less 

than or equal to the number of critical points of g. 

4.2. Theorem. Let V be a Nash set, compact and non-singular, defined by f = 0, 
where f denotes a Nash function of complexity <d. Then 

Proof. We follow Milnor’s proof [7] step by step for introducing some controi and 

explicit bounds. Let V: V + S”- * be the function which assigns to each point XE V 
the unit normal vector. The set of critical values of rl has dimension less than (n - 1). 

Then, there exist 2 points of S”-’ which are not critical values of q. Up to a rota- 
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tion, we may assume that these points are (0, . . . , 1) and (0, . . . . -1). Remark that a 

rotation affects only the Xi and does not change the complexity. Let h : V--+ R be 

the ‘height function’: h(x,, . . . , x,) =x,, . Let us show that h is a Morse function. Let 

y be a critical point of h. We can take near y local coordinates: x1 = ul, . . . ,x, _ , = 

un-,,xn=h(u~, . . . . u, _ ,). We can compute that 

The matrix (a2h/aUiaUj(_Y)) is non-singular; this means that h is a Morse function. 

It follows, by Morse theory, that the sum of the Betti numbers of I/ is less than 

or equal to the number of critical points of h. They are the solutions of the system 

af 0 __ = 
ax, ’ 

(S) 

: i 

af=o 
ax,_, ’ 

If =o. 

Since h is a Morse function, y is a non-degenerated solution of (S). Hence, we can 

apply Bezout theorem to the system (S). Since each af/ax, is a Nash function of 

complexity less than or equal to ~(f)~=d~, the theorem follows immediately. 0 

Now we want to remove the hypothesis that V is compact and non-singular. 

4.3. Theorem. Let V be a Nash set defined by f,(x) = ..+ =f,(x) =0 where fi 
denotes a Nash function of complexity less than or equal to d. 

Then the sum of the Betti numbers of V is less than or equal to +(2p’ 1dp)2”P’. 

Proof. For R 2 0 sufficiently large, the inclusion B(0, R) fl V + V is a deformation 

retract. So, it is enough to bound C b;(B(O, R) rl V). For a given E L 0, let F, be the 

Nash function defined by 

F,(x) =f;(x)+...+f;(x)+e211xj12-R2. 

F,(x) has a complexity less than or equal to 2P+‘dP (11~11~ is of complexity 2). 

Let K, = {x E R” 1 F,(x) I O}. K, is a compact set since it is contained in the disk 

B(0, R/E). 
On the other hand, Sard’s theorem gives us a real a? 0 such that for E E IO, a[, the 

boundary aK, = {XE R” 1 F,(x) = 0} of K, is non-singular. Then we can apply the 

above theorem to aK,: 
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Now applying Alexander duality, it follows that 

C bi(Kc)5 f C bj(aK,)r +(2”+1dp)2”-1. 

Since 

B(o,5yw-= f-) K, 
Eelo,al 

and the fact that these sets can be triangulated, we have 

Hi(B(O,R) fl V) = I@ Hi(K,). 

so, 
C b,(V) = C bi(B(O,R)fl V) = C bi(K,)I i(2”l’dP)2”1. 0 
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